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Abstract. Techniques for learning automata have been adapted to automatically
infer assumptions in assume-guarantee compositional verification. Learning, in
this context, produces assumptions and modifies them using counterexamples
obtained by model checking components separately. In this process, the inter-
face alphabets between components, that constitute the alphabets of the assump-
tion automata, are fixed: they includeall actions through which the components
communicate. This paper introducesalphabet refinement, a novel technique that
extends the assumption learning process to also infer interface alphabets. The
technique starts with only asubsetof the interface alphabet and adds actions to it
as necessary until a given property is shown to hold or to be violated in the sys-
tem. Actions to be added are discovered by counterexample analysis. We show
experimentally that alphabet refinement improves the current learning algorithms
and makes compositional verification by learning assumptions more scalable than
non-compositional verification.

1 Introduction

Model checking is an effective technique for finding subtle errors in concurrent soft-
ware. Given a finite model of a system and of a required property, model checking
determines automatically whether the property is satisfied by the system. The limita-
tion of this approach, known as the “state-explosion” problem [9], is that it needs to
explore all the system states, which may be intractable for realistic systems.

Compositional verification addresses state explosion by a “divide and conquer” ap-
proach: properties of the system are decomposed into properties of its components and
each component is then checked separately. In checking components individually, one
needs to incorporate some knowledge of the contexts in which the components are ex-
pected to operate correctly. Assume-guarantee reasoning [17, 22] addresses this issue
by introducing assumptions that capture the expectations of a component from its envi-
ronment. Assumptions have traditionally been defined manually, which has limited the
practical impact of assume-guarantee reasoning.

Recent work [12, 5] has proposed a framework based on learning thatfully auto-
matesassume-guarantee model checking. Since then, several similar frameworks have



been presented [3, 20, 24]. To check that a system consisting of componentsM1 andM2

satisfies a propertyP , the framework automatically guesses and refines assumptions for
one of the components to satisfyP , which it then tries to discharge on the other com-
ponent. Our approach is guaranteed to terminate, stating that the property holds for the
system, or returning a counterexample if the property is violated.

Compositional techniques have been shown particularly effective for well-structured
systems that have small interfaces between components [7, 14]. Interfaces consist ofall
communication points through which the components may influence each other’s be-
havior. In the learning framework of [12] the alphabet of the assumption automata being
built includesall the actions in the component interface. However, in a case study pre-
sented in [21], we observed that a smaller alphabet was sufficient to prove the property.
This smaller alphabet was determined through manual inspection and with it, assume-
guarantee reasoning achieves orders of magnitude improvement over monolithic (i.e.,
non-compositional) model checking [21].

Motivated by the successful use of a smaller alphabet in learning, we investigate
here whether we can automate the process of discovering a smaller alphabet that is suf-
ficient for checking the desired properties. Smaller alphabet means smaller interface
between components, which may lead to smaller assumptions, and hence to smaller
verification problems. We propose a novel technique calledalphabet refinementthat
extends the learning framework to start with a small subset of the interface alphabet
and to add actions into it as necessary until a required property is shown to hold or to
be violated in the system. Actions to be added are discovered by analysis of the coun-
terexamples obtained from model checking the components. We study the properties of
alphabet refinement and show experimentally that it leads to time and memory savings
as compared to the original learning framework [12] and monolithic model checking.
The algorithm has been implemented within the LTSA model checking tool [19].

The algorithm is applicable to and may benefit any of the previous learning-based
approaches [3, 20, 24]; it may also benefit other compositional analysis techniques.
Compositional Reachability Analysis (CRA), for example, computes abstractions of
component behaviors based on their interfaces. In the context of property checking [7],
smaller interfaces may result in more compact abstractions, leading to smaller state
spaces when components are put together.

The rest of the paper is organized as follows. Section 3 presents a motivating exam-
ple. Section 4 presents our original learning framework from [12]. Section 5 presents
the main algorithm for interface alphabet refinement. Section 6 discusses properties
and Section 7 presents an experimental evaluation of the proposed algorithm. Section 8
surveys some related work and Section 9 concludes the paper. In the next section we
review the main ingredients of the LTSA tool and the L* learning algorithm.

2 Background

Labeled Transition Systems (LTSs). LTSA is an explicit-state model checker that an-
alyzes finite-state systems modeled aslabeled transition systems(LTSs). LetA be the
universal set of observable actions and letτ denote a special action that is unobservable.
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Fig. 1. Example LTS for a client (left) and a mutual exclusion property (right)

An LTS M is a tuple〈Q,αM, δ, q0〉, where:Q is a finite non-empty set of states;
αM ⊆ A is a set of observable actions called thealphabetof M ; δ ⊆ Q×(αM∪{τ})×
Q is a transition relation, andq0 is the initial state. An LTSM is non-deterministic
if it contains τ -transitions or if∃(q, a, q′), (q, a, q′′) ∈ δ such thatq′ 6= q′′. Other-
wise, M is deterministic. We useπ to denote a specialerror state that has no out-
going transitions, andΠ to denote the LTS〈{π},A, ∅, π〉. Let M = 〈Q, αM, δ, q0〉
andM ′ = 〈Q′, αM ′, δ′, q′0〉. We say thatM transits into M ′ with actiona, denoted
M

a→ M ′, if and only if (q0, a, q′0) ∈ δ and eitherQ = Q′, αM = αM ′, andδ = δ′

for q′0 6= π, or, in the special case whereq′0 = π, M ′ = Π.
Consider a simple client-server application (from [21]). It consists of aservercom-

ponent and two identicalclient components that communicate through shared actions.
Each client sendsrequestsfor reservations to use a common resource, waits for the
server togrant the reservation, uses the resource, and thencancelsthe reservation. For
example, the LTS of a client is shown in Figure 1 (left), wherei = 1, 2. The server can
grant or denya request, ensuring that the resource is used only by one client at a time
(the LTS of the server is in the Appendix).

Parallel Composition. Parallel composition “‖” is a commutative and associative op-
erator such that: given LTSsM1 = 〈Q1, αM1, δ

1, q1
0〉 andM2 = 〈Q2, αM2, δ

2, q2
0〉,

M1 ‖ M2 is Π if either one ofM1, M2 is Π. Otherwise,M1 ‖ M2 is an LTS
M = 〈Q,αM, δ, q0〉 whereQ = Q1 × Q2, q0 = (q1

0 , q2
0), αM = αM1 ∪ αM2, andδ

is defined as follows, wherea is either an observable action orτ :

M1
a→ M ′

1, a /∈ αM2

M1 ‖ M2
a→ M ′

1 ‖ M2

M1
a→ M ′

1,M2
a→ M ′

2, a 6= τ

M1 ‖ M2
a→ M ′

1 ‖ M ′
2

Traces. A trace t of an LTSM is a sequence of observable actions starting from the
initial state and obeying the transition relation. The set of all traces ofM is called the
languageof M , denotedL(M). For any tracet a trace LTScan be constructed whose
language consists of onlyt. We sometimes abuse the notation and denote byt both a
trace and its trace LTS. The meaning should be clear from the context. ForΣ ⊆ A, we
denote byt↓Σ the trace obtained by removing fromt all occurrences of actionsa /∈ Σ.
Similarly, M↓Σ is defined to be an LTS over alphabetΣ which is obtained fromM by
renaming toτ all the transitions labeled with actions that are not inΣ. Let t, t′ be two
traces. LetA, A′ be the sets of actions occurring int, t′, respectively. By thesymmetric
differenceof t andt′ we mean the symmetric difference of setsA andA′.

Safety properties. We call a deterministic LTS not containingπ asafety LTS. A safety
propertyP is specified as asafety LTSwhose languageL(P ) defines the set of accept-
able behaviors overαP . For example, the mutual exclusion property in Figure 1 (right)
captures the desired behaviour of the the client-server application discussed earlier.
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Fig. 2. Client-Server Example: complete interface (left) and derived assumption with alphabet
smaller than complete interface alphabet (right).

An LTS M satisfiesP , denotedM |= P , iff ∀σ ∈ M : σ↓αP∈ L(P ). For checking
a propertyP , its safety LTS iscompletedby adding error stateπ and transitions on
all the missing outgoing actions from all states intoπ so that the resulting transition
relation is total and deterministic; the resulting LTS is denoted byPerr. LTSA checks
M |= P by computingM ‖ Perr and checking ifπ is reachable in the resulting LTS.

Assume-guarantee reasoning. In the assume-guarantee paradigm a formula is a triple
〈A〉M〈P 〉, whereM is a component,P is a property, andA is an assumption aboutM ’s
environment. The formula is true if wheneverM is part of a system satisfyingA, then
the system must also guaranteeP . In LTSA, checking〈A〉M〈P 〉 reduces to checking
A ‖ M |= P . The simplest assume-guarantee proof rule shows that if〈A〉M1〈P 〉 and
〈true〉M2〈A〉 hold, then〈true〉M1 ‖ M2〈P 〉 also holds:

(Premise 1)〈A〉M1〈P 〉
(Premise 2)〈true〉M2〈A〉

〈true〉M1 ‖ M2〈P 〉
Coming up with appropriate assumptions used to be a difficult, manual process. Re-
cent work has proposed an off-the-shelf learning algorithm, L*, to derive appropriate
assumptionsautomatically[12].

The L* learning algorithm . L* was developed by Angluin [4] and later improved by
Rivest and Schapire [23]. L* learns an unknown regular languageU over alphabetΣ
and produces a deterministic finite state automaton (DFA) that accepts it. L* interacts
with a Minimally Adequate Teacherthat answers two types of questions from L*. The
first type is amembership queryasking whether a strings ∈ Σ∗ is in U . For the second
type, the learning algorithm generates aconjectureA and asks whetherL(A) = U . If
L(A) 6= U the Teacher returns a counterexample, which is a strings in the symmetric
difference ofL(A) andU . L* is guaranteed to terminate with a minimal automatonA
for U . If A hasn states, L* makes at mostn − 1 incorrect conjectures. The number
of membership queries made by L* isO(kn2 + n log m), wherek is the size ofΣ, n
is the number of states in the minimal DFA forU , andm is the length of the longest
counterexample returned when a conjecture is made.

3 Assume-guarantee Reasoning and Small Interface Alphabets

We illustrate the benefits of smaller interface alphabets for assume guarantee reason-
ing through the client-server example of Section 2. To check the property in a com-
positional way, assume that we break up the system into:M1 = Client1 ‖ Client2
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and M2 = Server. Thecompletealphabet of the interface betweenM1 ‖ P and
M2 (see Figure 2 (left)) is:{client1.cancel, client1.grant, client1.deny, client1.request,
client2.cancel, client2.grant, client2.deny, client2.request}.

Using this alphabet and the learning method of [12] yields an assumption with 8
states (see Appendix). However, a (much) smaller assumption is sufficient for prov-
ing the mutual exclusion property (see Figure 2 (right)). The assumption alphabet is
{client1.cancel, client1.grant,client2.cancel, client2.grant}, which is a strict subset of the
complete interface alphabet (and is, in fact, the alphabet of the property). This assump-
tion has just 3 states, and enables more efficient verification than the 8-state assumption
obtained with the complete alphabet. In the following sections, we present techniques
to infer smaller interface alphabets (and the corresponding assumptions) automatically.

4 Learning for Assume-guarantee Reasoning

In previous work [12], we developed an automated assume-guarantee framework that
uses L* to infer assumptions for compositional verification. A central notion of the
framework is that of theweakest assumption[14], defined formally here.

Definition 1 (Weakest Assumption forΣ). LetM1 be an LTS for a component,P be
a safety LTS for a property required ofM1, andΣ be the interface of the component
to the environment. The weakest assumptionAw,Σ of M1 for Σ and for propertyP is
a deterministic LTS such that: 1)αAw,Σ = Σ, and 2) for any componentM2, M1 ‖
(M2↓Σ) |= P iff M2 |= Aw,Σ

The notion of a weakest assumption depends on the interface between the component
and its environment. Accordingly, projection ofM2 to Σ forcesM2 to communicate
with our module only throughΣ (second condition above). In [14] we showed that the
weakest assumptions exist for components expressed as LTSs and safety properties and
provided an algorithm for computing these assumptions.

The definition above refers toany environment componentM2 that interacts with
componentM1 via an alphabetΣ. WhenM2 is given, there is a natural notion of the
completeinterfacebetweenM1 and its environmentM2, when propertyP is checked.

Definition 2 (Interface Alphabet). Let M1 andM2 be component LTSs, andP be a
safety LTS. The interface alphabetΣI of M1 is defined as:ΣI = (αM1 ∪αP )∩αM2.

Definition 3 (Weakest Assumption).Given M1, M2 and P as above, the weakest
assumptionAw is defined asAw,ΣI

.

Note that, to deal with any system-level property, we allow properties in definition 2
to include actions that are not inαM1 but are inαM2. These actions need to be in the
interface since they are controllable byM2. Moreover from the above definitions, it fol-
lows that the assumptionAw is indeed theweakest: it characterizes all the environments
M2 that, together withM1, satisfy propertyP , i.e., M1 ‖ M2 |= P iff M2 |= Aw.

Learning framework . The original learning framework from [12] is illustrated in Fig-
ure 3. The framework checksM1 ‖ M2 |= P by checking the two premises of the
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Fig. 3. Learning framework.

assume-guarantee rule separately, and using the conjecturesA from L* as assumptions.
The automatonA output by L* is, in the worst case, theweakest assumptionAw. The
alphabet given to the learner is fixed toΣ = ΣI .

The Teacher is implemented using model checking. For membership queries on
strings, the Teacher uses LTSA to check〈s〉M1〈P 〉. If true, thens ∈ L(Aw), so the
Teacher returns true. Otherwise, the answer to the query is false. The conjectures re-
turned by L* are intermediate assumptionsA. The Teacher implements twooracles:
Oracle 1guides L* towards a conjecture that makes〈A〉M1〈P 〉 true. Once this is ac-
complished,Oracle 2is invoked to dischargeA on M2. If this is true, then the assume
guarantee rule guarantees thatP holds onM1 ‖ M2. The Teacher then returns true and
the computed assumptionA. Note thatA is not necessarilyAw, it can bestrongerthan
Aw, i.e., L(A) ⊆ L(Aw), but the computed assumption is good enough to prove that
the property holds or is violated. If model checking returns a counterexample, further
analysis is needed to determine ifP is indeed violated inM1 ‖ M2 or if A is imprecise
due to learning, in which caseA needs to be modified.

Counterexample analysis. Tracet is the counterexample from Oracle 2 obtained by
model checking〈true〉M2〈A〉. To determine ift is a real counterexample,i.e., if it leads
to error onM1 ‖ M2 |= P , the Teacher analyzest on M1 ‖ Perr. In doing so, the
Teacher needs to first projectt onto the assumption alphabetΣ, that is the interface of
M2 to M1 ‖ Perr. Then the Teacher uses LTSA to check〈t↓Σ〉M1〈P 〉. If the error
state is not reached during the model checking,t is not a real counterexample, andt↓Σ

is returned to the learner L* to modify its conjecture. If the error state is reached, the
model checker returns a counterexamplec that witnesses the violation ofP on M1 in
the context oft↓Σ . With the assumption alphabetΣ = ΣI , c is guaranteed to be a real
error trace onM1 ‖ M2 ‖ Perr [12]. However, as we shall see in the next section, if
Σ ⊂ ΣI , c is not necessarily a real counterexample and further analysis is needed.

5 Learning with Alphabet Refinement

Let M1 andM2 be components,P be a property,ΣI be the interface alphabet, andΣ
be an alphabet such thatΣ ⊂ ΣI . Assume that we use the learning framework of the
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Fig. 4. Learning with alphabet refinement (a) and additional counterexample analysis (b).

previous section, but we now set this smallerΣ to be the alphabet of the assumption
that the framework learns. From the correctness of the assume-guarantee rule, if the
framework reports true,M1 ‖ M2 |= P . When it reports false, it is because it finds a
tracet in M2 that falsifies〈t↓Σ〉M1〈P 〉. This, however, does not necessarily mean that
M1 ‖ M2 6|= P . Real violations are discovered by our original framework only when
the alphabet isΣI , and are tracest′ of M2 that falsify〈t′↓ΣI 〉M1〈P 〉.

We illustrate this with the client-server example. AssumeΣ = {client1.cancel,
client1.grant, client2.grant}, smaller thanΣI = {client1.cancel, client1.grant, client1.deny,
client1.request, client2.cancel, client2.grant, client2.deny, client2.request}. Learning with
Σ produces trace:t = 〈client2.request, client2.grant, client2.cancel, client1.request,
client1.grant〉. Projected toΣ, this becomest↓Σ= 〈client2.grant, client1.grant〉. In the
context oft↓Σ , M1 = Clients violates the property since Client1 ‖ Client2 ‖ Perr

contains the following behavior (see Figure 2):

(0, 0, 0)
client1.request−→ (1, 0, 0)

client2.request−→ (1, 1, 0)
client2.grant−→ (1, 2, 2)

client1.grant−→ (2, 2, error).

Learning therefore reportsfalse. This behavior is not feasible, however, in the context
of t↓ΣI = 〈client2.request, client2.grant, client2.cancel, client1.request, client1.grant〉.
This trace requires a client2.cancel to occur before the client1.grant. Thus, in the con-
text of ΣI the above violating behavior would be infeasible. We conclude that when
applying the learning framework with alphabets smaller thatΣI , if true is reported then
the property holds in the system, but violations reported may be spurious.

5.1 Algorithm

We propose a technique calledalphabet refinement, which extends our learning frame-
work to deal with smaller alphabets thanΣI while avoiding spurious counterexamples.
The steps of the algorithm are as follows (see Figure 4 (a)):

1. Initialize Σ to a setS such thatS ⊆ ΣI .
2. Use the classic learning framework forΣ. If the framework returnstrue, then report

true and go to step 4 (END). If the framework returns false with counterexamples
c (andt), go to the next step.

3. Performextended counterexample analysisfor c. If c is a real counterexample,
then reportfalseand go to step 4 (END). Ifc is spurious, thenrefine Σ, which
consists of adding toΣ actions fromΣI . Go to step 2.
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4. END of algorithm.

When spurious counterexamples are detected, the refiner extends the alphabet with
actions in the alphabet of the weakest assumption and the learning of assumptions is
restarted. In the worst case,ΣI is reached, and as proved in our previous work, learning
then only reports real counterexamples. In the above high-level algorithm, the high-
lighted steps 1) alphabet initialization, 2) extended counterexample analysis and 3) al-
phabet refinement are further specified in the following.

Alphabet initialization . The correctness of our algorithm is insensitive to the initial
alphabet. We implement two options: 1) we set the initial alphabet to the empty set to
allow the algorithm to only take into account actions that it discovers, and 2) we set the
initial alphabet to those actions in the alphabet of the property that are also inΣI ,i.e.,
αP ∩ΣI (in the experiments from Section 7 we used the second option). The intuition
for the latter option is that these interface actions are likely to be significant in proving
the property, since they are involved in its definition. A good initial guess of the alphabet
may achieve big savings in terms of time since it results in fewer refinement iterations.

Extended counterexample analysis. An additional counterexample analysis is ap-
pended to our original learning framework as illustrated in Figure 4(a). The steps of
this analysis are shown in Figure 4(b). The extension takes as inputs both the coun-
terexamplet returned by Oracle 2, and the counterexamplec that is returned by the
original counterexample analysis. We modified our “classic” learning framework (Fig-
ure 3) to return bothc and t to be used in alphabet refinement (as explained below).
As discussed,c is obtained because〈t↓Σ〉M1〈P 〉 does not hold. The next step is to
check whether in factt uncovers a real violation in the system. As illustrated by our
client-server example, the results of checkingM1 ‖ Perr in the context oft projected
to different alphabets may be different. The correct results are obtained by projectingt
on the alphabetΣI of the weakest assumption. Counterexample analysis therefore calls
LTSA to check〈t↓ΣI

〉M1〈P 〉. If LTSA finds an error, the resulting counterexamplec
is a real counterexample. If error is not reached, the alphabetΣ needs to be refined.
Refinement proceeds as described next.

Alphabet refinement. When spurious counterexamples are obtained by the learning
framework, we need to enrich the current alphabetΣ so that these counterexamples are
eventually eliminated. A spurious counterexamplec is caused by the fact that in the
context oft↓ΣI

this counterexample would not be obtained. Our refinement heuristics
are therefore based on comparingc andt↓ΣI to discover actions inΣI to be added to the
learning alphabet (for this reasonc is also projected onΣI in the refinement process).
We have currently implemented and experimented with the following heuristics:

AllDiff: adds all the actions in the symmetric difference oft↓ΣI andc↓ΣI ; a potential
problem is that is that it may add too many actions too soon, but if it happens to
add useful actions, it may terminate after fewer iterations;

Forward: scans the traces in parallel from beginning to end looking for the first index
i where they disagree; if such ani is found, both actionst↓ΣI (i), c↓ΣI (i) are
added to the alphabet.

Backward: same as Forward but scans from the end of the traces to the beginning.

8



5.2 Extension ton Modules

So far, we have discussed our algorithm for two components. We have extended al-
phabet refinement ton modulesM1,M2, . . . Mn, for any n ≥ 2. In previous work,
we have extended learning (without refinement) ton components [12,?]. To check if
M1 ‖ M2 ‖ . . . ‖ Mn satisfiesP , we decompose it into:M1 andM ′

2 = M2 ‖ ... ‖ Mn

and the learning algorithm (without refinement) is invoked recursively for checking the
second premise of the assume-guarantee rule.

Learning with alphabet refinement uses recursion in a similar way. At each recursive
invocation forMj , we solve the following problem: find assumptionAj and alphabet
ΣAj

such that the rule premises hold:
Oracle 1:Mj ‖ Aj |= Aj−1

Oracle 2:Mj+1 ‖ Mj+2 ‖ ... ‖ Mn |= Aj

HereAj−1 is the assumption forMj−1 and plays the role of the property for the current
recursive call. Thus, the alphabet of the weakest assumption for this recursive invocation
is Σj

I = (αMj ∪ αAj−1) ∩ (αMj+1 ∪ αMj+2 ∪ . . . ∪ αMn). If Oracle 2 returns
a counterexample, then the counterexample analysis and alphabet refinement proceed
exactly as in the 2 component case. At a new recursive recursive call forMi with a new
Ai−1, the alphabet of the weakest assumption is recomputed.

6 Properties of Learning with Refinement

In this section, we discuss properties of the proposed algorithm. We present here the
main results (proofs and helping lemmas are given in the Appendix) We first re-state
the correctness and termination of learningwithout refinement as proven in [12].

Theorem 1 (Termination and correctness for learning without refinement [12]).
Given componentsM1 andM2, and propertyP , the learning framework in [12] ter-
minates and it returns true ifM1||M2 |= P and false otherwise.

For correctness and termination of learning with alphabet refinement, we first show
progress of refinement, meaning that at each refinement stage, new actions are discov-
ered to be added toΣ.

Proposition 1 (Progress of alphabet refinement).LetΣ ⊂ ΣI be the alphabet of the
assumption at the current alphabet refinement stage. Lett be a trace ofM2||Aerr such
that t↓Σ leads to error onM1||Perr by an error tracec, butt↓ΣI

does not lead to error
onM1||Perr. Thent↓ΣI

6= c↓ΣI
and there exists an action in their symmetric difference

that is not inΣ.

Correctness for two (andn) components follows from the assume guarantee rule and
the extended counterexample analysis. Termination follows from termination of the
original framework, from the progress property and also from the finiteness ofΣI and
of n. Moreover, from the progress property it follows that the refinement algorithm for
two components has at most|ΣI | iterations.
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Theorem 2 (Termination and correctness of learning with alphabet refinement – 2
components).Given componentsM1 andM2, and propertyP , the L* algorithmwith
alphabet refinementterminates and returns true ifM1||M2 |= P and false otherwise.

Theorem 3 (Termination and correctness of learning with alphabet refinement –
n components).Given componentsM1, M2, ... Mn and propertyP , the recursive L*
algorithmwith alphabet refinementterminates and returns true ifM1||M2||...||Mn |=
P and false otherwise.

We also note a property of weakest assumptions, which states that by adding actions to
an alphabetΣ, the corresponding weakest assumption becomesweaker(i.e., contains
more behaviors) than the previous one.

Proposition 2. Assume componentsM1 and M2, propertyP and the corresponding
interface alphabetΣI . Let Σ, Σ′ be sets of actions such that:Σ ⊂ Σ′ ⊂ ΣI . Then:
L(Aw,Σ) ⊆ L(Aw,Σ′) ⊆ L(Aw,ΣI

).

With alphabet refinement, our framework adds actions to the alphabet, which trans-
lates into adding more behaviors to the weakest assumption that L* tries to prove. This
means that at each refinement stagei, when the learner is started with a new alphabetΣi

such thatΣi−1 ⊂ Σi, the learner will try to learn an assumptionAw,Σi that is weaker
thanAw,Σi−1 , which was the goal of the learner in the previous stage. Moreover, all
these assumptions areunder-approximationsof the weakest assumptionAw,ΣI

that is
necessary and sufficient to prove the desired property. Of course, as mentioned before,
at each refinement stage, the learner might stop earlier, i.e., before computing the cor-
responding weakest assumption. The above property allows re-use of learning results
across refinement stages (see Section 7).

7 Experiments

We implemented learning with alphabet refinement in Java, as a plug-in for the LTSA
model-checker. We present here an experimental evaluation of our implementation for
checking safety properties on concurrent models. The goal of our evaluation is to assess
the effect of alphabet refinement on learning, and to compare learning with alphabet
refinement with non-compositional model checking.

Models and properties. In our experiments we used the following case studies.Gas
Station[11] describes a self-serve gas station consisting ofk customers, two pumps,
and an operator. Fork = 3, 4, 5, we checked the property that the operator correctly
gives change to a customer for the pump that he/she used.Chiron [11] models a graph-
ical user interface consisting ofk “artists”, a wrapper, a manager, a client initialization
module, a dispatcher, and two event dispatchers. Fork = 2...5, we checked Property 2,
stating that the dispatcher notifies artists of an event before receiving a next event, and
Property 3, stating that the dispatcher only notifies artists of an event after it receives
that event.MER [21] models a component of the flight software for JPL’s Mars Ex-
ploration Rovers (MER). The software containsk user threads competing for resources
that are managed by a resource arbiter. Fork = 2...6 we checked a mutual exclusion
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Table 1.Comparison of 2-component learning with and without alphabet refinement.

Case
k No refinement Refinement + bwd Refinement + fwd Refinement + allDiff
|A| Mem. Time |A| Mem. Time |A| Mem. Time |A| Mem. Time

Gas Station 3 177 4.34 – 8 3.29 2.70 37 6.47 36.52 18 4.58 7.76
4 195 100.21 – 8 24.06 19.58 37 46.95 256.82 18 36.06 52.72
5 53 263.38 – 8 248.17 183.70 20 414.19 – 18 360.04 530.71

Chiron, 2 9 1.30 1.23 8 1.22 3.53 8 1.22 1.86 8 1.22 1.90
Property 2 3 21 5.70 5.71 20 6.10 23.82 20 6.06 7.40 20 6.06 7.77

4 39 27.10 28.00 38 44.20 154.00 38 44.20 33.13 38 44.20 35.32
5 111 569.24607.72110 – 300 110 – 300 110 – 300

Chiron, 2 9 116 110 3 1.05 0.73 3 1.05 0.73 3 1.05 0.74
Property 3 3 25 4.45 6.39 3 2.20 0.93 3 2.20 0.92 3 2.20 0.92

4 45 25.49 32.18 3 8.13 1.69 3 8.13 1.67 3 8.13 1.67
5 122 131.49246.84 3 163.85 18.08 3 163.85 18.05 3 163.85 17.99

MER 2 40 6.57 7.84 6 1.78 1.01 6 1.78 1.02 6 1.78 1.01
3 377 158.97 – 8 10.56 11.86 8 10.56 11.86 8 10.56 11.85
4 38 391.24 – 10 514.411193.53 10 514.411225.95 10 514.411226.80

Rover Exec.2 11 2.65 1.82 4 2.37 2.53 11 2.67 4.17 11 2.54 2.88

property stating that communication and driving cannot happen at the same time since
they share common resources.Rover Executive[12] is a model of a subsystem of the
K9 Mars Rover Executive. The model is comprised of a main coordinating component
calledExecutiveand anExecCondCheckercomponent that is responsible for monitor-
ing state conditions. The property we checked states that for a specific shared variable,
if the Executivereads its value, then theExecCondCheckershould not read the variable
before theExecutiveclears it first.

In [11], four properties of the Gas Station and nine properties of Chiron have been
checked, to study how various 2-way decompositions of these models affect the per-
formance of learning (without alphabet refinement). For most of these properties and
decompositions, the learning approach performs better than non-compositional verifica-
tion and it produces small (one-state) assumptions. For some other properties, learning
does not perform that well, and produces much larger assumptions. To stress-test our
approach, we selected the latter, more challenging, properties for our study here.

Experimental set-up and results. We performed two sets of experiments. First, we
studied learning with alphabet refinement for2-waydecompositions (using an experi-
mental set-up similar to [11]), to compare learningwith different alphabet refinement
heuristics to learningwithoutalphabet refinement. Second, we compared the recursive
implementation of the refinement algorithm with monolithic (non-compositional) veri-
fication, for increasing number of components. All the experiments were performed on
a Dell PC with a 2.8 GHz Intel Pentium 4 CPU and a 1.0 GB RAM, running Linux
Fedora Core 4 and using Sun’s Java SDK version 1.5.

For the first set of experiments, we used the best two-way decompositions used
in [11] for Gas Station and Chiron. For Gas Station, the decomposition is: the operator
and the first pump in one component, and the rest of the modules in the other. For Chi-
ron, the event dispatchers are one component, and the rest of the modules are the other.
For MER we used the decomposition where half of the users are in one component, and
the other half with the arbiter in the other. Rover is given in two components already.
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Table 2.Comparison of recursive learning with and without alphabet refinement and monolithic verification.

Case
k

No refinement Refinement + bwd Monolithic
|A| Mem. Time |A| Mem. Time Mem. Time

Gas Station3 299 238.27 – 25 2.42 14.65 1.42 0.034
4 289 298.22 – 25 3.43 23.60 2.11 0.126
5 313 321.72 – 25 5.29 49.72 6.47 0.791

Chiron, 2 344 118.80 – 4 0.96 2.51 0.88 0.030
Property 2 3 182 114.57 – 4 1.12 2.97 1.53 0.067

4 182 117.93 – 4 2.21 4.59 2.42 0.157
5 182 115.10 – 4 7.77 6.97 13.39 1.22

Chiron, 2 229 134.85 – 11 1.68 40.75 1.21 0.035
Property 3 3 344 99.12 – 114 28.94 2250.23 1.63 0.068

4 295 86.03 – 114 35.65 – 2.93 0.174
5 295 90.57 – 114 40.49 – 15.73 1.53

MER 2 40 8.66 24.95 6 1.85 1.94 1.04 0.024
3 440 200.55 – 8 3.12 3.58 4.22 0.107
4 273 107.73 – 10 9.61 9.62 14.28 1.46
5 200 83.07 – 12 18.95 23.55 143.1127.84
6 162 84.96 – 14 47.60 93.77 – 900

For the second set of experiments, we implemented an additional heuristic for com-
puting theordering in which the modules are considered by the recursive learning with
refinement. The heuristic is meant to minimize the interface between modules and fol-
lows from the observation that the ordering of the modules in the sequenceM1, . . . , Mn

influences the sizes of the interface alphabetsΣ1
I , . . . Σn

I that are used by the recursive
algorithm. We generated offline all possible orders and associated interface alphabets
and chose the order that minimizes the sum

∑
j |Σj

I |.
The results of the experiments are in Tables 1 and 2 In both tables we vary the value

of the parameterk for the parameterized models. We report results for running the learn-
ing framework with ’No refinement’, and for ’Refinement’ with backward (’+bwd’),
forward (’+fwd’) and all ’+allDiff’ heuristics. For each run we report ’|A|’ (the max-
imumassumption size reached during learning), ’Mem.’ (themaximummemory used
by LTSA to perform model checking of the assume-guarantee triples, measured in MB)
and ’Time’ (CPU running time, measured in seconds). Column ’Monolithic’ reports
the results of non-compositional model checking. We set a limit of 30 minutes for each
run. The exception is Chiron, Property 3, in our second study (Table 2) where the limit
was 60 minutes, since this property was more challenging). The sign ’–’ in the memory
or time columns indicate that the limit of 1GB of memory or the time limit has been
exceeded. For these cases, the rest of the data is reported as it was when the limit was
reached.

Discussion. The results in both tables show that alphabet refinement improves learning.
Table 1 shows that alphabet refinement improved the assumption size in all cases, and in
a few, up to two orders of magnitude (see Gas Station withk = 2, 3, Chiron, Property 3,
with k = 5, MER withk = 3). It improved memory consumption in 10 out of 15 cases.
It also improved running time, as for Gas Station and for MER withk = 3, 4 learning
without refinement did not finish within the time limit, whereas with refinement it did.
The benefit of alphabet refinement is even more obvious in Table 2 where learning
without refinement exceeded the time limit in all but one case, whereas with refinement
it completed in 14 of 16 cases, producing smaller assumption sizes in all the cases, and
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up to two orders of magnitude smaller in a few; the resource consumption was also
improved in all cases, and up to two orders of magnitude (for memory) in a few of
them. The results in Table 1 also indicate that the performance of different refinement
strategies is mostly similar, each one beats the others on some cases, but the ’bwd’
strategy is slightly better. For this reason, for the experiments in Table 2 we fixed the
refinement strategy to ’bwd’.

The results in Table 2 indicate that learning with refinement scales better than
without refinement for increasing number of components. Ask increases, the memory
and time consumption of learning with refinement grows slower than that of the non-
compositional model checking reported in column ’Monolithic’. For Gas Station, Chi-
ron (Property 2), and MER, for small values ofk, learning with refinement consumes
more memory than the corresponding ’Monolithic’, but as the parameter increases, the
gap was narrowing, and for the largest value ofk learning with refinement becomes bet-
ter than ’Monolithic’. This leads to cases where, for a large enough parameter value, the
monolithic runs out of memory, whereas learning with alphabet refinement succeeds,
as it is the case for MER withk = 6. The rate of growth of the running time for Gas
Station, Chiron, Property 2, and MER is also lower than that of monolithic: with each
increment ofk, the time of monolithic grows by one order of magnitude, whereas that
of learning with refinement grows at most three times, while remaining within the same
oder of magnitude.

Optimizations. Chiron, Property 3, was a challenging case for learning with (or with-
out) alphabet refinement. We therefore looked at it more closely. After inspecting the
models (which were generated automatically as described in [11]), we noticed that sev-
eral modules defined in the model do not influence Property 3. If we eliminate these
modules, the property still holds in the composition of the remaining modules. The per-
formance of learning with refinement is greatly improved when applied to this reduced
system (e.g., for k = 3, the size of the largest assumption is 13) and better than mono-
lithic. In the future, we plan to investigate slicing-like techniques to eliminate modules
that do not affect the given property. To improve the running time of our technique,
we will investigate the reuse of learning results across refinement iterations. Currently,
after one refinement stage we restart the learning process from scratch. The property of
alphabet refinement formulated in Proposition 2 in Section 6 facilitates reuse of query
answers obtained during learning. A query asks whether a trace projected on the current
assumption alphabet leads to error onM1 ‖ Perr. If the answer is ’no’, by Proposition 2
the same trace will not lead to error when the alphabet is refined. Thus, we could cache
these query answers. Another feasible direction is to reuse the learning table as de-
scribed in [24]. We also plan to use multiple counterexamples for refinement. This may
enable faster discovery of relevant interface actions, and therefore faster convergence
of our algorithm.

8 Related work

Several frameworks have been proposed to support assume guarantee reasoning [17, 22,
10, 15]. For example, the Calvin tool [13] uses assume-guarantee reasoning for the anal-
ysis of Java programs, while Mocha [2] supports modular verification of components

13



with requirements specified based in the Alternating-time Temporal logic. The practical
impact of these previous approaches has been limited because they require non-trivial
human input in defining appropriate assumptions.

In previous work [14, 12], we developed techniques for performing assume-guarantee
reasoning using L*. Since then, several other frameworks that use L* for learning as-
sumptions have been developed – [3] presents a symbolic BDD implementation using
NuSMV. This symbolic version was extended in [20] with algorithms that decompose
models using hypergraph partitioning, to optimize the performance of learning on re-
sulting decompositions. Different decompositions are also studied in [11] where the
best two-way decompositions are computed for model-checking with the LTSA and
FLAVERS tools. We follow a direction orthogonal to the latter two approaches and try
to improve learning not by automating and optimizing decompositions, but rather by
discovering small interface alphabets. Our approach can be combined with the decom-
position approaches, by applying interface alphabet refinement in the context of the
discovered decompositions. L* has also been used in [1] to synthesize interfaces for
Java classes, and in [24] to check component compatibility after component updates.

Our approach is similar in spirit to counterexample-guided abstraction refinement
(CEGAR) [8]. CEGAR computes and analyzes abstractions of programs (usually using
a set of abstraction predicates) and refines them based on spurious counter-examples.
However, there are some important differences between CEGAR and our algorithm. Al-
phabet refinement works on actions rather than predicates, it is applied compositionally
in an assume-guarantee style and it computes under-approximations (of assumptions)
rather than behavioral over-approximations (as it happens in CEGAR). In the future,
we plan to investigate more the relationship between CEGAR and our algorithm.

The work of [16] proposes a CEGAR approach to interface synthesis for Java li-
braries. This work does not use learning, nor does it address the use of the resulting
interfaces in assume-guarantee verification.

Generating assumptions for a component is similar to generating component in-
terfaces to handle intermediate state explosion in compositional reachability analysis.
Several approaches have been defined to automatically abstract a component’s environ-
ment to obtain interfaces [6, 18, 7]. These approaches do not address the incremental
refinement of interfaces, and they could benefit from our new approach.

9 Conclusions

We have introduced a novel technique for automatic and incremental refinement of in-
terface alphabets in compositional model checking. Our approach extends an existing
framework for learning assumption automata in assume-guarantee reasoning. The ex-
tension consists of using interface alphabets smaller an the ones previously used in
learning, and using counterexamples obtained from model checking the components to
add actions to these alphabets as needed. We have studied the properties of the new
learning algorithm and have experimented with various refinement heuristics. Our ex-
periments show improvement with respect to previous learning approaches in terms of
the sizes of resulting assumptions and memory and time consumption, and with respect
to non-compositional model checking, as the sizes of the checked models increase.
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In future work we will address further algorithmic optimizations (as described at the
end of Section 7) and we will perform more experiments to fully evaluate our technique.
On the theoretical side, we will clarify the relationship between our refinement and
classical abstraction-refinement techniques.
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Appendix

Fig. 5. Client-Server Example: LTS for Server (as displayed by the LTSA tool)

9.1 Properties of Learning with Refinement

In this section, we discuss in more detail the properties of the proposed learning framework,
including progress of refinement, correctness and termination. We begin with re-stating the cor-
rectness and termination of learningwithout refinement as proven in [12].
Theorem 1 (Termination and correctness for learning without refinement [12]). Given com-
ponentsM1 andM2, and propertyP , the algorithm implemented by the learning framework in
[12] terminates and it returns true ifM1||M2 |= P and false otherwise.

For the termination and correctness of learning with our alphabet refinement, we first prove
progress of refinement. We prove that when the Refiner comparest↓ΣI andc↓ΣI , they must be
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Fig. 6.Client-Server Example: assumption obtained with the complete interface alphabet (as dis-
played by the LTSA tool)
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different, and their difference contains actions that are not inΣ. Those are the actions to be added
to Σ.
Proposition 1 (Progress of alphabet refinement). LetΣI = (αM1∪αP )∩αM2 andΣ ⊂ ΣI

be the alphabet of the weakest assumption and that of the assumption at the current alphabet
refinement stage, respectively. Lett be a trace ofM2||Aerr such thatt↓Σ leads to error on
M1||Perr by an error tracec, but t↓ΣI does not lead to error onM1||Perr. Thent↓ΣI 6= c↓ΣI

and there exists an action in their symmetric difference that is not inΣ.

Proof. We prove by contradiction thatt↓ΣI 6= c↓ΣI . Supposet↓ΣI = c↓ΣI . We know thatc is an
error trace onM1||P . Since actions ofc that are not inΣI are internal toM1||P , thenc↓ΣI also
leads to error onM1||Perr. But thent↓ΣI leads to error onM1||Perr, which is a contradiction.

We now show that there exists an action in the difference betweent↓ΣI andc↓ΣI that is
not in Σ (this action will be added toΣ by alphabet refinement). Tracet↓ΣI is t↓Σ , with some
interleaved actions fromΣI . Similarly, c↓ΣI is t↓Σ with some interleaved actions fromΣI ,
sincec is obtained by composing the trace LTSt↓Σ with M1||Perr. Thust↓Σ= c↓Σ . We again
proceed by contradiction. If all the actions in the symmetric difference betweent↓ΣI andc↓ΣI

were inΣ, we would havet↓ΣI = t↓Σ= c↓Σ= c↓ΣI , which contradictst↓ΣI 6= c↓ΣI . 2

In order to prove termination and correctness of learning with alphabet refinement, we will
use the following lemma.

Lemma 1. For any componentM1, propertyP , and interface alphabetΣ, 〈Aw,Σ〉〈M1〉〈P 〉
holds.

Proof. Aw,Σ↓Σ= Aw,Σ . If in Definition 1 we substituteAw,Σ for M2, we obtain that:M1 ‖
Aw,Σ1 |= P if and only if Aw,Σ1 |= Aw,Σ . But the latter holds trivially, so we conclude that
M1 ‖ Aw,Σ1 |= P , which is equivalent to〈Aw,Σ〉〈M1〉〈P 〉, always holds.2

Theorem 2 (Termination and correctness of learning with alphabet refinement – 2 com-
ponents). Given compoenentsM1 and M2, and propertyP , the L* algorithmwith alphabet
refinementterminates and returns true ifM1||M2 |= P and false otherwise.

Proof. Correctness: When the teacher returns true, then correctness is guaranteed by the assume-
guarantee compositional rule. If the teacher returns false, the extended counterexample analysis
reports an error for a tracet of M2, such thatt↓ΣI in the context ofM1 violates the property (the
same test is used in the algorithm from [12]) henceM1 ‖ M2 violates the property.

Termination: From the correctness of L*, we know that at each refinement stage (with al-
phabetΣ), if L* keeps receiving counterexamples, it is guaranteed to generateAw,Σ . At that
point, Oracle 1 will return true (from Lemma 1). Therefore, Oracle 2 will be applied, which will
return either true, and terminate, or a counterexamplet. This counterexample is a trace that is
not inL(Aw,Σ). It is either a real counter example (in which case the algorithm terminates) or
it is a tracet such thatt↓Σ leads to error onM1||Perr by an error tracec, but t↓ΣI does not
lead to error onM1||Perr. Then from Theorem 1, we know thatt↓ΣI 6= c↓ΣI and there exists
an action in their symmetric difference that is not inΣ. The refiner will add this action (or more
actions depending on the refinemt strategy) toΣ and the learning algorithm is repeated for this
new alphabet. SinceΣI is finite, in the worst case,Σ grows intoΣI , for which termination and
correctness follow from Theorem 1.2

Theorem 3 (Termination and correctness of learning with alphabet refinement –n compo-
nents). Given compoenentsM1, M2, ... Mn and propertyP , the recursive L* algorithmwith
alphabet refinementterminates and returns true ifM1||M2||...||Mn |= P and false othrwise.
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Proof. The proof proceeds by induction onn and it follows from theorem above.2

Proposition 2. Assume we have componentsM1 and M2, propertyP and the corresponding
interface alphabetΣI . Let alsoΣ, Σ′ be sets of actions such that:Σ ⊂ Σ′ ⊂ ΣI . Then:
L(Aw,Σ) ⊆ L(Aw,Σ′) ⊆ L(Aw,ΣI ).

Proof. SinceΣ ⊆ Σ′, we know thatAw,Σ↓Σ′= Aw,Σ . By substituting, in Definition 1,Aw,Σ

for M2, we obtain that:〈true〉M1 ‖ (Aw,Σ)〈P 〉 if and only if 〈true〉Aw,Σ〈Aw,Σ′〉. From Propo-
sition 1 we know that〈true〉M1 ‖ (Aw,Σ)〈P 〉. Therefore,〈true〉Aw,Σ〈Aw,Σ′〉 holds, which
implies thatL(Aw,Σ) ⊆ L(Aw,Σ′). Similarly,L(Aw,Σ′) ⊆ L(Aw,ΣI )2.
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